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Categorical vs. continuous vars.
• categorical variables contain a limited number of 

steps (e.g., male – female, experimentally 
manipulated or not)

• continuous variables have a (theoretically 
unlimited) number of steps (e.g., body height, 
weight, IQ)

• ANOVA (next session) is for categorical 
predictors, Correlation and regression analyses 
(this session) is for continuous predictors
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Categorical vs. continuous vars.
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• relation hypotheses explore whether there is a relation 
between one (or more) independent and a dependent 
variable

• difference hypotheses explore whether there is a difference 
between the steps of one (or more) independent and a 
dependent variable

• the distinction between IV and DV is blurred for relation 
hypotheses
→ causality can only be inferred if the independent variable 
was experimentally manipulated

Relation vs. difference hypotheses
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• correlation: measure size and direction of a linear 
relationship of two variables (with the squared correlation 
as strength of association – explained variance)

• regression: predict one variable from one (or many) other 
(minimizing the squared distance between data points and a 
regression line)
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Correlation and regression
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• when calculating correlation (r) and regression coefficients 
(B), both use the covariance between IV and DV as 
numerator; but the correlation uses the variance of both IV 
and DV, the regression only the variance of the IV as 
denominator

Correlation and regression
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Questions?
Comments?



regression techniques:
• standard, sequential (hierarchical), statistical (stepwise)

typical research questions for using regression analysis:
• investigate a relationship between a DV and several IV
• investigate a relationship between one DV and some IVs 

with the effect of other IVs statistically eliminated
• compare the ability of several competing sets of IVs to 

predict a DV
• (ANOVA as a special case with dichotomous IVs; Ch. 5.6.5)

Correlation and regression
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changing IVs:
• squaring IVs (or raising to higher power) to explore 

curvilinear relationships
• creating a cross-product of two (or more) IVs to explore 

interaction effects

predicting scores for members of a new sample:
• regression coefficients (B) can be applied to new samples
• generalizability should be checked with cross-validation 

(e.g., 50/50, 80/20 or boot-strapping)

Correlation and regression
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limitations:
• implied causality
• theoretical assumptions (or lack of) regd. inclusion of variables

theoretical: if the goal is the manipulation of a DV, include 
some IVs that can be manipulated as well as some who can’t
practical: include «cheaply obtained» IVs (SSB)
statistical: IVs should correlate strongly with the DV but weak 
with other IVs (goal: predict the DV with as few as possible 
IVs); remove IVs that degrade prediction (check residuals)
chose IVs with a high reliability

Correlation and regression
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ratio of cases to IVs (m = IVs):
N ≥ 50 + 8m for multiple correlation (standard / hierarchical)
N ≥ 40m for multiple correlation (stepwise)
N ≥ 104 + m for individual predictors
(assuming α = .05, β = .20 and medium effect size;
higher numbers if DV is skewed, small effect size is anticipated or 
substantial measurement error is expected)
N ≥ (8 / f²) + (m – 1) (f = .02, .15, .35 for small, medium, large eff.)

strategies for insufficient N: exclude IVs, create composite meas.

Correlation and regression
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Questions?
Comments?



Conditions for parametric tests
absence of multicollinearity and singularity:
• regression is impossible if IVs are singular (i.e., a 

linear combination of other IVs) or unstable if they 
are multicollinear

• screening through detection of high R²s when IVs 
are (in turn) predicted using other IVs

• variable removal should consider reliability and 
cost of acquisition
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Conditions for parametric tests
• conditions for using parametric tests (such as 

correlation, regression, t-test, ANOVA)
• if one of these conditions is violated, non-

parametric tests have to be used
• robustness against violation of certain assumptions 

(relatively robust against deviation from normality; 
deviations from linearity and homoscedacity do 
not invalidate an analysis but weaken it)
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Conditions for parametric tests
• normality and

possible causes for
normality violations
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Conditions for parametric tests
• linearity

(non-linear
models are
available, but
not introduced
here)
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Conditions for parametric tests
• homogeneity of

variance = 
homoscedasticity
(heteroscedacity can be
counteracted by using
generalized least square
regression where the
DV is weighed by the IV
that produces the hetero-
scedacity)
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Conditions for parametric tests
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Conditions for parametric tests
• consequences of

not removing out-
liers on the skew-
ness (and in con-
sequence the nor-
mality) of a distri-
bution
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Conditions for parametric tests
• consequences of

not removing out-
liers on the slope
of a correlation / 
regression
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Conditions for parametric tests
strategies for removing outliers:
• univariate – SPSS FREQUENCIES (box plots; for 

N < 1000 → p = .001 → z = ±3.3)
• multivariate: SPSS REGRESSION (Save → 

Distances → Mahalanobis; calculate 
“SIG.CHISQ(MAH_1,3)” and exclude p < .001)
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Questions?
Comments?



• Parameter estimation: Mini- 
mize the squared error
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General linear model
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General linear model
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• PREREQUISITES FOR COM-
PARING TWO VARIABLES?

• WHAT WOULD LEAD TO AN
PERFECT POSITIVE COR-
RELATION (r = 1.00) AND
WHAT WOULD LEAD TO A 
PERFECT NEGATIVE COR-
RELATION (r = -1.00)?

Fundamental equations/calculations

UNIVERSITY OF BERGEN

PAGE 26



• Correlation: hands-on
• z-standardize both variables

(use popul. std. dev [STDEV.P])
• for each participant multiply

these z-standardized values
• average these individual multi-

plication products

Fundamental equations/calculations
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using the example in Ch. 5.4 (pp. 165-172) in Octave / MATLAB:
% define independent and dependent variables and calculate correlations among them
IV = [14, 19, 19; 11, 11, 8; 8, 10, 14; 13, 5, 10; 10, 9, 8; 10, 7, 9]
DV = [18; 9; 8; 8; 5; 12]
R = corrcoef([IV, DV])
RII = R(1:3, 1:3)
RID = R(1:3, 4)
% determine the standaridized B-weights multiple correlation
BS = inv(RII) * RID
R2 = RID' * BS
% determine the unstandardized regression coefficients
BU = diag(BS * (std(DV) ./ std(IV)))
A = mean(DV) - mean(IV) * BU
% calculate the predicted DVs
DVP = IV * BU + A
% display your results
plot(DV, DVP, "r*"); xlim([0, 20]); ylim([0, 20]); line([0, 20], [0, 20]);
plot(DVP, DV - DVP, "b*"); xlim([0, 20]); ylim([-10, 10]); line([0, 20], [0, 0]);
% create an "artifical" new student and use this for prediction
[12, 14, 15] * BU + A

Fundamental equations/calculations
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Fundamental equations/calculations

UNIVERSITY OF BERGEN

PAGE 29

using the example in
Ch. 5.4 (p. 165-172) in 
SPSS:



Questions?
Comments?



Major types of multiple regression
three analytic strategies:
• standard
• sequential / hierarchical
• statistical / stepwise

differ in how the IVs contribution to
the prediction is weighed
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Major types of multiple regression
standard regression:
• enters all IVs at once in the equation
• only unique contributions are considered

(may make the contribution of a variable
look unimportant due to the correlation
with other IVs, e.g., IV

2
)
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Major types of multiple regression
sequential / hierarchical regression:
• enters IVs in an order specified

can be entered separately or in blocks
according to logical or theoretical conside-
rations, e.g. experimentally manipulated
variables before nuisance variables, the
other way round, or comparing different sets

• additional contribution of each IV is considered
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Major types of multiple regression
statistical / stepwise regression:
• controversial; order of entry (or possibly

removal) specified by statistical criteria
• three versions: forward selection, back-

ward deletion, stepwise regression
• tendency for overfitting → requires large and 

representative sample; should be cross-validated 
(R² discrepancies indicate lack of generalizability)
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Major types of multiple regression
choosing regression strategies:

• standard: simply assess relationships (atheoretical)
what is the size of the overall relationship between IVs and DV?

• sequential: testing theoretical assumptions or explicit hypotheses (IVs can 
be weighted by importance)
how much does each variable uniquely contribute?

• statistical: model-building (explorative, generating hypotheses) rather than 
model-testing
can be very misleading unless based on large, representative samples
can be helpful for identifiying multicollinear / singular vars.
what is the best linear combination of variables / best prediction?
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Questions?
Comments?



Important issues
Variable contribution / importance

● straightforward if IVs are uncorrel.
● relationship between correlation,

partial and semipartial correlation
(SPSS Regression – Statistics – Part and partial corr.)

● sum of semipartial corr. is smaller
than R² if IVs are correlated
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Important issues
suppressor variables:

● IV that suppresses irrelevant variance by virtue of 
its correlation with other IVs
(e.g., a questionaire and a measure of test-taking ability; the questionaire 
confounds the actual construct with test-taking skills and test-taking ability 
removes this [irrelevant] confundation)

● can be identified by the patterns of regr. coeffic. β 
and the correlations between IVs and DV:
(1) β ≠ 0; (2) abs(r

IV-DV
) < β or sign(r

IV-DV
)

 
≠ sign(β)
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Important issues
mediation:

● causal sequence of three / more vars.
(e.g., a relation between gender and visits to health care
professionals mediated / driven by a personality aspect
[«caused» by gender])

● variable is a mediatior if: sign. relat.
IV ↔ DV and IV ↔ Md, Md (IV partialed out) 
↔ DV,  if mediator incl.: IV ↔ DV diminished 

● decompose direct and mediation effects
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Important issues
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Summary
● typical research questions
● assumptions and requirements
● fundamental equations: do-it-yourself
● regression types and when to use them
● issues to keep in mind
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Thank you for your
interest!
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